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Abstract—The paper aims to estimate a signal that best pro-
vides the identification of a quadrotor type Unmanned Aerial
Vehicle angular control loop using a bioinspired metaheuristic
Artificial Immune System algorithm. The angular control loop
was approximated by a second-order system using the Recursive
Least Square method. The results were satisfactory, presenting,
in general, a rich enough signal to provide a correct estimation
of the system.

Keywords—Optimization, Artificial Immune System, Recursive
Least Square Method, Quadrotors.

I. INTRODUCTION

Metaheuristic optimization algorithms, like Genetic Algo-
rithms (GA), Simulated Annealing (SA), Artificial Bee Colony
(ABC), Ant Colony Algorithms (AC), and Artificial Immune
Systems (AIS) are being used for different problems. Methods
such as those mentioned have been the focus of research
and improvements, showing a more efficient performance than
conventional optimization techniques, despite presenting some
limitations depending on its application [1]–[3].

AIS algorithms are inspired by the immune system [4]. A set
of AIS algorithms has been developed since the early 1990s by
independent groups, having different properties and suitability
for a diverse set of applications. The obtained results, in many
cases, have rivalled or improved statistical learning techniques
and some machine learning [5].

Over the years, several reviews about AIS have been made.
In general, Negative Selection Algorithm [6], Clonal Selection
Algorithm [7], and Immune Network Algorithm are the base
algorithms of the majority of AIS techniques [8].

The AIS technique has been widely used in several fields,
such as data analysis [9]–[11]; optimization of multiobjective
functions [12]–[14]; dynamic polymorphic agents scheduling
and execution [15]; solution of optimal power flow problems
[16]; and error detection [17]–[20]. This algorithm have a
large capacity of robust data processing for complex problems
solution [4].

Regarding signal and parameter estimation, a vast number
of papers have been developed, such as parameter estimation
in dynamic systems through optimal input signals [21]; iden-
tification of multi-input systems [22]; and optimal parameter
estimation of constrained nonlinear dynamical systems using
persistently-exciting signal generation [23].

The use of Unmanned Aerial Vehicles (UAV), more specif-
ically, the quadrotor type, is exponentially growing in many
fields, as military, research, and commercial [24]. The expan-
sion is due to the improvement in the quality of sensors and
electronic equipment, as well as the number of developers
working in this area [25].

Based on the AIS optimization technique, this paper aims
to estimate a suitable input signal capable of approaching a
system for a second-order transfer function using Recursive
Least Squares (RLS) technique, as well as applying to the
control loops present on quadrotors.

II. ARTIFICIAL IMMUNE SYSTEMS

The AIS is an algorithm created from observations of bio-
immune systems [26]. This technique is inspired by the immune
response of organisms consisting of the identification of anti-
gens by B-cells (lymphocytes), which after their recognition
produce antibodies to fight them. Antigens are the foreign
bodies that attack organisms, and B-cells are defense cells [4].

The immune system must distinguish between elements
belonging to the organism (proper) and foreign elements
(improper), which have to be recognized by lymphocytes.
However, not every B-cell has a binding affinity with a given
antigen. Thus, there are thousands of different B-cells seeking
this recognition. When the recognition is achieved, the B-cell
is cloned to try to fight the antigen and mutates to try to find
a lymphocyte with even higher affinity [27].

The organism has a vast diversity of lymphocytes, inherited
genes, which function as a library providing random recom-
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bination and generating new lymphocytes that may have high
affinity with the antigen of the systems [27].

Mathematical equations can be used to express the function-
ing of the immune system. In (1) is calculated the number of
clones to be generated for solutions with higher degrees of
affinity. In (2), the solution affinity value is normalized to be
applied in (3), which expresses the mutation probability of a
given solution.

Nci = round(
c.N

i
) (1)

Fni =
Fi

Fimax
(2)

αi = e−h. Fni (Maximization) (3)

or

αi = e
−h
Fni (Minimization)

where:
Nci = number of clones of solution i.
c = cloning process control constant.
N = number of solution possibilities.
Fni = normalized affinity value of solution i.
Fi = affinity value of solution i.
FiMax = highest affinity value among the solutions.
αi = clone mutation probability.
h = affinity maturation process control constant.

III. METHODOLOGY

The methodology used in this work consists of quadrotor
modelling and control presentation; RLS technique use for
estimation of the desired transfer function; AIS technique
implementation; results acquisition.

A. Non-Linear Aircraft Modelling and Control

Some UAV physical properties are measured in FI (roll,
pitch and yaw angles, angular velocities), while some properties
are measured in Fb (linear accelerations).

Typically, UAV modelling uses the following state variables:
the vector [pn, pe, h]

T represents the inertial North, East and
Altitude (facing down) positions along the (̂ii, ĵi,−k̂i) axes
representing the inertial frame; the vector [ϕ, θ, ψ]T represents
the roll, pitch and yaw angles considering the vehicle frame
(̂iv, ĵv,−k̂v). The vectors [u, υ, ω]T and [p, q, r]T represent the
three dimensional speeds and angular velocities over the axes
(̂ib, ĵb,−k̂b) of the body frame [28], [29].

Its position η ∈ R6 is the generalized position with vector
η1 ∈ R3 between origins of FI and Fb, while η2 ∈ R3

is defined with the orientation of Fb with the respect to the
FI . The orientation is defined with three consecutive rotations
around the FI coordinate axes, roll-pitch-yaw order. According
to [30], (4) presents the default nomenclature.

η1 = [pn pe h]T

η2 = [ϕ θ ψ]T

η = [η1 η2]
T (4)

Regarding to velocities, (5) presents them:

ν1 = [vb] = [u v w]T

ν2 = [ωb] = [p q r]T

ν = [ν1 ν2]
T (5)

where ν ∈ R6 is the generalized velocity vector, ν1 ∈ R3 is the
linear velocity vector, ν2 ∈ R3 is the angular velocity vector,
both in Fb.

The 6 Degrees of Freedom (DOFs) rigid body kinematics
and dynamics model is expressed in (6).

η̇ = Jν (6)

where η̇ ∈ R6 is the generalized velocity vector in FI and
J ∈ R6×6 is the generalized rotation and transformation
matrix, presented below [31]:

J =

[
J1 03×3

03×3 J2

]
(7)

J1 =

 cθcψ sϕsθcψ − cθsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕsθ cϕcθ

(8)

J2 =

 1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 (9)

where cθ , cos θ, sθ , sin θ, tθ , tan θ, J1 ∈ R3×3 is the
rotation matrix to relate linear velocity vector and J2 ∈ R3×3

is the rotation matrix to relate angular velocity vector, both
from Fb to FI .

UAV dynamics are described by differential equations from
Newton-Euler method. The mass m and the body inertia matrix
ICG are taken into consideration in the 6 DOFs rigid body, as
shown in (10).

Mbν̇ +Cb(ν)ν = τ (10)

where:

Mb =

[
mI 03×3

03×3 ICG

]
(11)

Cb(ν) =

[
mS(ν2) 03×3

03×3 −S(ICGν2)

]
(12)

τ = τp + τ g (13)

where Mb ∈ R6×6 is the system inertia matrix, Cb(ν) ∈ R6×6

is the Coriolis-centripetal matrix at the body-fixed frame Fb,
S(ν2) ∈ R3×3 is the skew-symmetrical matrix of vector ν2,
τ = [τx, τy, τz, τϕ, τθ, τψ] ∈ R6 is resultant vector compound
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by vector of Gravitational τ g ∈ R6 and Propulsion τp ∈ R6

forces and torques, both in the body-fixed frame Fb. Note that
I ∈ R3×3 is the identity matrix, different from ICG.

Considering the constructive symmetry characteristics, (14)
presents the body inertia matrix ICG .

ICG =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 =

 0.0188 0 0
0 0.0188 0
0 0 0.0319

 (14)

Concerning propulsion forces and gravitational forces and
torques, (15) presents them.

τ =

(
J1

T

03×3

) 0
0
mg

+


0
0

−k1δ1 − k1δ2 − k1δ3 − k1δ4
A1

A2

A3

 (15)

where δ∗ is the PWM (Pulse Width Modulation) control signal
of the respective propulsion motor (from 1 to 4) and g is the
gravitational constant.

Now it is necessary to do some linearization of this full
non-linear model to use this linear function to estimate its
parameters. It is important to highlight that its evaluation will
be done by taking the full model into account.

Following the methodology presented in [32] and [33], it
is possible to approach the equations for small angles and
assume that, because of small angle variations, Coriolis terms
(qr, pr and pq) are small. Then, (16) express the simplified
three angular model: ϕ̈

θ̈

ψ̈

 =

 τϕ/Ixx
τθ/Iyy
τψ/Izz

 (16)

The design of PID controller gains (KP , KI , and KD) is
performed with the intention of producing responses in the
angular attitude control meshes as presented in (17).

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(17)

where ωn is the desired natural frequency and ζ is the desired
damping ratio.

More details about UAV modeling and its simplification
procedures are found in the related works [24], [32], [34]–[36].

B. Recursive Least Square Method

Recursive Least Squares estimation consists in the formation
of normal equations based on data that describe the linearized
relationship between residual measures and estimation param-
eters [37].

Through the elimination technique, normal equations can be
solved by parameter estimation. In addition, the covariance
matrix can be obtained by inverting the matrix of normal
equations. In other words, the usual method for matrix inversion
is susceptible to numerical errors [38].

Thus, (18) is the expression that allows error minimization
through the RLS technique.

min
x

1

2
||Mx−D||22 (18)

where x are the variables to be estimated; M is the response
input matrix of the function to be estimated and D the respective
output matrix.

From this assumption, the presented matrices must be ob-
tained. Initially, for purposes of robustness in the method, a
generic second-order transfer function was considered as a
result of the function estimated by the RLS, presented in (19).

G(s) =
Y (s)

X(s)
=
A2s

2 +A1s+A0

B2s2 +B1s+ 1
(19)

where A2, A1, A0, B2, and B1 are the variables that compose
the vector x presented in (18).

However, as in most embedded systems, this equation must
be discretized. Then, (21) shows the result of the discretization
by the trapezoidal or Tustin method.

A2(x[n]− 2x[n− 1] + x[n− 2]) +

A1dt(x[n]− x[n− 1]) +A0dt
2x[n]− (20)

B2(y[n]− 2y[n− 1] + y[n− 2])−
B1dt(y[n]− y[n− 1]) = dt2y[n]

where dt is the simulation sampling step.
Therefore, based on the above equation, one can, through an

input and output vector of a system similar to that shown in
(19), estimate the parameters A2, A1, A0, B2, and B1.

C. AIS Technique Implementation

The AIS was developed in a simulation software and fol-
lowed the flowchart structure shown in Fig. 1, where each
individual of the population represents a random input signal,
starting from zero and oscillating randomly along its length.
This signal is used to excite the estimated control plant, which,
compared to the real one, returns the Objective Function (OF)
of the algorithm.

The variable iT is the current iteration and iTMAX
is the

stop criteria. Since this paper aims to estimate the signal that
best approximates the real control plant by the RLS method,
the objective function here is to minimize the error between
the responses of both plants. Thus, the obtained response in
the original system is compared to the obtained one in the
simulated plant through the mean square error between the
signals.

The random signals (individuals) are created using a discrete
approach. In order to create the signal, a matrix with pre-
established dimensions is used. The higher the used matrix, the
higher is the created signal level of detail, since each cell of
the respective matrix represents a possible value for the signal.
From the initial matrix, the neighbors of each cell are mapped.
These neighbors are used to identify the possible paths to be
taken.
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Figure 1. AIS algorithm flowchart.

Each cell can have a maximum of five neighbors, as the
signal is sequential. However, in this approach, only three are
used, as shown in Fig. 2.

Figure 2. Neighbor cells diagram.

With the assembled neighbor matrix, one can randomly select
a current cell neighbor to insert it as a new value in the signal
being built. The process is repeated until it reaches the end of
the matrix, presenting a result such as an example shown in
Fig. 3.

Once assembled, the discrete signal goes through a manip-
ulation, where each cell is transformed into a value between
predetermined limits, both in amplitude and time. This manip-
ulation causes the signal to be within a controlled range, which
can be used to avoid amplitudes not allowed in the applied

Figure 3. Discretized signal.

system. The result of signal manipulation can be seen in Fig.
4.
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Figure 4. Time-varying signal.

IV. TESTS AND RESULTS

The tests consisted in using the algorithm to estimate the
signals to identify functions that represent the models of the
control meshes of Euler angles of a quadrotor in a simulation
software. For all tests, 50 generations and 30 individuals are
used.

As previously mentioned, the angular control loop of a
quadrotor can be represented by a second-order transfer func-
tion, with canonical form given by (17), where ωn is the natural
frequency of the system and ζ is the damping coefficient. Since
all three control loops have the same characteristics, different
values of ωn and ζ were used on each test.

With values of ω and ζ used in [36], as shown in Table I, the
AIS was applied to optimize the transfer function estimation
by choosing a correct input signal.

TABLE I
PARAMETERS ω AND ζ .

Angle ω ζ
Roll 1 0.8
Pitch 1.5 0.95
Yaw 1.2 0.75

The result of the algorithm can be seen in Figs. 5, 6, and 7,
and was obtained with the merit figures presented in Table II.
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Figure 5. Optimized signal, estimated plant response, and original plant
response for the roll angle control loop.
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Figure 6. Optimized signal, estimated plant response, and original plant
response for the pitch angle control loop.

TABLE II
MERIT FIGURES.

Attitude Angle Number of
Iterations

Simulation
Time (s)

Mean Square
Error

Roll 50 36.9331 0.0378
Pitch 50 32.7796 0.0559
Yaw 50 32.3309 0.0587

The estimated plant responses follow the shape of the
original transfer function without presenting major errors. The
estimated transfer functions of rolling, pitching, and yawing are
given by (21), (22), and (23), respectively.

G(s) =
0.001605s2 − 0.09881s+ 1

0.9228s2 + 1.501s+ 1
(21)

G(s) =
0.001556s2 − 0.0978s+ 1

0.3847s2 + 1.169s+ 1
(22)

G(s) =
0.001597s2 − 0.09863s+ 1

0.6345s2 + 1.151s+ 1
(23)

Since the constants that follow s2 and s in the obtained
transfer function numerator are very low and, thus, can be
neglected, the values of ω and ζ are very close to those used
in the algorithm. For the roll angle control loop, for instance,
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Figure 7. Optimized signal, estimated plant response, and original plant
response for the yaw angle control loop.

the obtained values of ω and ζ were 1.0409 and 0.7813,
respectively. Therefore, one can verify the effectiveness of the
used method.

V. CONCLUSIONS

This paper proposed the implementation of an optimization
technique based on Artificial Immunological Systems to the
signal estimation that best provides the identification of an
angular control loop of a quadrotor. The system was approxi-
mated by a second-order function using Recursive Least Square
method.

The AIS optimization technique obtained a satisfactory result
at the end of its execution, presenting in its response a rich
enough signal for the transfer function estimation using RLS
method. Furthermore, the algorithm did not require a large
number of individuals and iterations to find a good signal.
Consequently, the result is presented in reduced time.

Concerning the tests, it was observed that the estimated trans-
fer functions presented a negligible error for most applications
compared to the real plant, presenting a relatively low value of
mean square error.

As future works, different methods and approaches can
be implemented, such as used in [15], [16], [23], [39]–[42].
Another important works about optimization techniques to be
followed are [43]–[45].
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